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Abstract

GYRO solves the 5-dimensional gyrokinetic-Maxwell equations in shaped plasma geometry, using
either a local (flux-tube) or global radial domain. It has been ported to a variety of modern MPP
platforms including a number of commodity clusters, IBM SPs, SGI Altix and the Cray X1. Because
it performs quite well on the X1, the GYRO developers have been able to quickly design and analyze
new physics scenarios in record time: (i) transport barrier studies (Phys. Plasmas 11 (2004) 1879), (ii)
the local limit of global simulations (Phys. Plasmas 11 (2004) L25), (iii) kinetic electron and finite-beta
generalizations of a community-wide benchmark case, (iv) impurity transport with application to
fuel separation in burning D-T plasmas (to be submitted to Nuclear Fusion). We will discuss the
performance of GYRO across several platforms, and summarize recent physics accomplishments and
code optimization work.

1 GYRO Overview

The most promising and aggressively studied con-
cept for power production by fusion reactions is the
tokamak. Advances in the understanding and con-
trol of tokamak plasmas are continuously being re-
alized, although uncertainties remain in predicting
confinement properties and performance of larger
reactor-scale devices. The coupled gyrokinetic-
Maxwell (GKM) equations provide a foundation for
the first-principles calculation of turbulent tokamak
transport. For years, the numerical solution of the
nonlinear GKM equations has been a computational
physics “Grand Challenge”.

GYRO is a code that simulates tokamak tur-
bulence by solving the time-dependent, nonlinear
gyrokinetic-Maxwell equations for both ions and
electrons. It uses a five-dimensional grid and ad-
vances the system in time using a second-order,
implicit-explicit (IMEX) Runge-Kutta (RK) inte-
grator. GYRO is the only GKM code worldwide
that has both global and electromagnetic operational
capabilities. Development has been partially funded
by the Plasma Microturbulence Project, a fusion Sci-
DAC project. GYRO has been ported to a variety of
modern MPP platforms including a number of com-
modity clusters, IBM SPs and the Cray X1. It has
shown good scalability on all these platforms; the ex-
tent to which this scalability is enhanced by greater
per-processor efficiency will be reported. Recently,

the GYRO developers have been able to quickly for-
mulate and analyze new physics scenarios in record
time using the Cray X1 at ORNL.

Development of the GYRO core solver began in
1999 and all physics capabilities in the original de-
sign specification were realized in 2002. Refinements
to the numerical schemes were added after that and
concluded by early 2003.

In mid 2003, GYRO was ported and subse-
quently optimized on the Cray X1 at Oak Ridge
National Laboratory (ORNL). GYRO was found to
perform quite well on the X1, and thusly the GYRO
developers have been able to quickly design and an-
alyze new physics scenarios in record time: (i) trans-
port barrier studies (Phys. Plasmas 11 (2004) 1879),
(ii) the local limit of global simulations (Phys. Plas-
mas 11 (2004) L25), (iii) kinetic electron and finite-
beta generalizations of a community-wide bench-
mark case, (iv) impurity transport with application
to fuel separation in burning D-T plasmas (to be
submitted to Nuclear Fusion). We will report on the
performance of GYRO across several platforms, and
also report on the recent physics accomplishments,
and code optimization work.

In section 2, we review the GKM equations as
implemented in GYRO and follow with an overview
of the numerical methods used for their solution.
Section 3 focuses on GYRO performance through
a comparison of code timings on various architec-
tures. In section 4, recent physics accomplishments
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are summarized. Section 5 describes the most recent
work on GYRO and what future optimizations are
envisioned. Finally, conclusions are given in section
6.

2 GYRO equations

The GKM equations couple the gyrocenter distribu-
tion, f , to the electromagnetic fields, Φ:

∂f

∂t
= Laf + LbΦ + {f, Φ} (1)

where

FΦ =

∫ ∫

dv1 dv2 f

and Lb, Lb and F are linear operators. The sole
nonlinearity, which has a Poisson bracket structure,
appears in the gyrokinetic equation. The function
f(r, v1, v2) is discretized over a 5-dimensional grid
(three spatial and two velocity coordinates), while
the 3-dimensional electromagnetic fields Φ(r) =
[φ, A‖] are independent of velocity. Here φ and
A‖ are the electrostatic and electromagnetic poten-
tials, respectively. One averages over the fast orbital
motion (gyro-orbit) to eliminate the third velocity-
space dimension (gyro-angle). However, this so-
called gyro-averaging operation introduces nonlocal
spatial operators (F above, for example) perpendic-
ular to the magnetic field.

First, a fully spectral decomposition of the fluc-
tuating quantities (f, φ, A‖) is made,

φ =
∑

n

φn(r, θ) e−ın[ϕ−q(r)θ] . (2)

The integer n labels toroidal eigenmodes. Linear
studies, still very important for research problems,
can be carried out using a single value of n. In
Eq. (2), ϕ is the toroidal angle, θ is the poloidal angle
and q is the safety factor (which measures the helic-
ity of the equilibrium magnetic field). Although the
physical field, φ, is 2π-periodic in θ, the Fourier rep-
resentation has the implication that the Fourier co-
efficients, φn, are nonperiodic, and satisfy the phase
condition φn(r, π) = e−2πınq(r)φn(r,−π). Since φ is
real, the coefficients satisfy φ∗

n = φ−n. By fsn, we
mean the nth toroidal harmonic of fs, or (fs)n. In
the present paper, we restrict attention to circular
s − α (simple) geometry for brevity. In terms of
fsn, the spectral form of the gyrokinetic equation,

including collisions, is

∂fsn

∂t
− C[fsn − zsαsv‖s(GA‖)n] = RHSn(r, θ; λ, ε)

(3)

RHSn =

[

−v‖s(r, θ)

R0q

∂

∂θ
+ ıω

(1)
ds + ıω

(r)
ds

∂

∂r

]

(hsn + zsαs(Gus)n)

− ıns ω∗s (Gus)n + ı(q/r)ρs {Gus, h}n ,
(4)

where us
.
= φ − v‖sA‖, and

v‖s(r, θ)
.
= σµs

√

2εTs(r)
(

1 − λB̂(r, θ)
)

. (5)

Above, zs is the charge, ρs = cs/Ωci is the ion-
sound gyroradius, cs =

√

Te/mi is the sound speed,
Ωci = eB/mi is the ion cyclotron frequency, R0 is
the plasma major radius, B̂(r, θ) is the effective mag-
netic field strength, ns(r) is the equilibrium density,
Ts is the equilibrium temperature, σ is the sign of the
parallel velocity, and αs

.
= ns/Ts. The two velocity

coordinates are (ε, λ).
The Maxwell equations are written in terms of

the hsn as

nion
∑

s=1

αsz
2
s (1 −Rs) φn =

nion+1
∑

s=1

zsV[Ghsn] , (6)

−2ρ2
s

βe

∇2
⊥A‖n

+

nion+1
∑

s=1

αsz
2
s V[v2

‖sA‖n
]

=

nion+1
∑

s=1

zsV[v‖sGhsn] ,

(7)

where nion is the number of ion species (electrons
are denoted by s = nion + 1), and Rs = V[GG] is a
velocity-space-integrated double gyroaverage. The
disastrous Ampère cancellation problem will occur if
one attempts to naively evaluate the term V[v2

‖sA‖n
]

without rewriting the term in an equivalent form
that lends itself to a more robust numerical solution.
To do electrostatic simulations, one normally sets
A‖ = 0, which is consistent with the limit βe → 0.

The object V above is the 2-dimensional velocity-
integration operator, defined as

V[fs]
.
=

∑

σ

1

2
√

π

∫ ∞

0

dε e−ε
√

ε

∫ 1

0

d(λB̂)
√

1 − λB̂
fs(r, θ, ϕ; ε, λ, σ; t). (8)
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For concreteness, we note that V[1] = 1, V[ε] = 3/2
and V[v‖] = 0.

2.1 Discretization schemes

Here we sketch the type of discretization scheme
used in each dimension in order to provide a rough
idea of the numerical methods used in GYRO. A de-
tailed treatment is beyond the scope of the present
paper.

• toroidal angle: This is fully spectral [see Eq.
(2)].

• radius: Linear advective derivatives on f
are treated with upwind differences, whereas
derivatives on fields are treated with centered
differences. The gyrooperators G and R are
approximated using a (banded) pseudospectral
technique. The order of all discretizations is
adjustable at run-time.

• poloidal angle: For f , there is no fixed grid
in θ. Instead, the transformation

v‖s(r, λ, θ)

R0q(r)

∂

∂θ
→ Ω(r, λ)

∂

∂τ
(9)

is used to eliminate the singularity at bounce
points, v‖s = 0. Then, an upwind scheme in
τ is used to discretize ∂f/∂τ . Centered differ-
ences only are used on τ -derivatives of fields,
otherwise numerical instability will result.

• velocity-space: A transformation property
of Eq. (8) under integration over θ is used to
recast the velocity-space integration. Then,
in both ε and λ, an exact Gauss-Legendre
quadrature scheme is numerically generated
(by nonlinear root-finding) at run-time. This
is different at each radius and for different
plasma equilibria.

• nonlinearity: The nonlinear Poisson bracket
is evaluated with a conservative difference-
spectral analogue of the Arakawa method.

• collisions: Collisions are represented by a
second-order diffusive-type operator in λ. This
operator is split from the collisionless prob-
lem and a irregular-grid generalization of the
Crank-Nicholson method is used.

• time-advance: A 2nd-order IMEX RK
scheme is used, with the electron parallel mo-
tion (∂/∂θ) in Eq. (4) treated implicitly. This
is exceptionally complicated due to the use of
a τ -grid, as well as the presence of the field
quantity us in the advection. However, the
implicitness is crucial for the elimination of a
numerical instability connected with patholog-
ical electrostatic Alfvén waves.

3 Performance comparisons

In this section we describe the performance of
GYRO. As mentioned previously, GYRO has been
ported to a variety of modern MPP platforms in-
cluding a number of commodity clusters, IBM SPs,
SGI Altix, and the Cray X1. Since the developers
insist on portable code, to date they have only a
single source and plan to keep it that way. Thus a
port to a new architectures is typically nothing more
than creating a new makefile. This is mentioned now
because although the single-source philosophy has
made GYRO a very portable code, it has the impact
of preventing use of machine specific code optimiza-
tions which would adversely affect performance on
other architectures.

GYRO was ported to the ORNL Cray X1 in
mid-2003. In testing functionality, a couple bugs in
GYRO were identified and corrected. GYRO has un-
dergone some vectorization for the X1. The changes
were minimal – affecting only 14 routines – and in
some cases simultaneously beneficial on other archi-
tectures. These changes were mostly the addition of
directives, but there were selected instances of rank
promotion/demotion, and an instance of “pushing”
a loop down into a subroutine call.

3.1 Platforms

In following sections, GYRO timings will be re-
ported from the following list of platforms.

• AMD Athlon cluster
The AMD Athlon cluster at Princeton Plasma
Physics Laboratory (PPPL) has 48 2-way
Athlon MP2000+ (1.667 GHz) nodes with
gigE interconnect. Each processor has a
peak performance of 1.667 × 2 = 3.334
GFlops/s. GYRO was compiled with La-
hey/FujitsuFortran 95 L6.10c.

3



• IBM Nighthawk II (Power3) cluster
The IBM Nighthawk II cluster with SP
Switch2 interconnect at the National Energy
Research Supercomputer Center (NERSC) has
416 16-way Power3 (375 Mhz) nodes. The
peak performance of a Power3 processor is
375 × 4 = 1.5 GFlops/s. GYRO was com-
piled using ESSL 3.3 and XL Fortran 8.1. The
machine has parallel environment 3.2 and is
running AIX 5.1.

• IBM p690 (Power4) cluster
The IBM p690 cluster with Federation in-
terconnect1 at Oak Ridge National Labora-
tory (ORNL) has 27 32-way Power4 (1.3 GHz)
nodes. The peak rate of each node is 32×1.3×
4 = 166.4 GFlops/s. GYRO was built using
ESSL 4.1 and XL Fortran 8.1. The machine
is using parallel environment 4.1 and running
AIX 5.2.

• SGI Altix
The SGI Altix at ORNL is a 256-way single-
system image with a NUMAflex fat-tree inter-
connect running Linux. Each processor is a
1.5 GHz Itanium 2 with 6 MB L3 cache. The
machine peak rate is 256 × 1.5 × 4 = 1536
GFlops/s. The Altix has a NUMAflex fat-tree
interconnect. GYRO was built using the Intel
Fortran 7.1 compiler.

• Cray X1
The Cray X1 at ORNL is also a single-system
image of 256 multistreaming processors. Each
processor is capable of 12.8 GFlops/s, and thus
the peak of the machine is 3276.8 GFlops/s.
The OS and Programming Environment have
changed constantly on the X1 at ORNL over
the past year as the software matured. Thus
there is no one OS level or version of the com-
piler that all the tests were run at. Note
the latest GYRO timings were collected with
Programming Environment 5.1.0.5 and mpt
2.3.0.3, and the OS was Unicos m/p 2.4.12.
Unless otherwise stated, all X1 timings are re-
ported MSP counts.

1 Currently the Federation interconnect does not properly

stripe across adapters with 2 links. In this case where the

number of parallel communication paths made available to

the network protocol is 2, the performance is worse than if

the number of paths is set to 1. Thus max proto instances=1

on the ORNL p690 cluster as recommended by IBM until a

“Federation code with striping” is released.

3.2 BCY.n16.25

This test case is a 16-toroidal-mode electromagnetic
(electrons and ions, 2 fields) case. The grid is
16 × 128 × 8 × 8 × 20 × 2. It runs on multiples
of 16 processors. The test case run for 8 simulation
seconds representing 1000 timesteps. With an 128-
point radial domain and only 16 toroidal modes, this
benchmark is somewhat small. However, the electro-
magnetic physics (field-line bending) requires small
timesteps for nonlinear stability.

Figure 1 shows the average number of seconds
per timestep on three platforms for BCY.n16.25, and
Figure 2 shows the ratio of communication time to
total time on these same machines.
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Figure 1 shows that X1 performance is signif-
icantly better than that on other platforms, even
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for this modest size problem. Even replotting the
data with Single-Streaming Processors (SSPs), four
of which compose one MSP, as the processor indi-
cates that the X1 is the faster platform. Further-
more, Figure 2 shows that the IBM performance is
limited by communication overhead. The large spike
in the communication time percentage at 128 and
192 processors on the Altix is not understood yet,
and it is reproducible. Also, although not obvious,
Figure 2 shows that X1 performance is limited by
a nonscaling part of the parallel algorithm. At 192
processors, 15% of the time is spent in a phase that
does not scale beyond 16-way parallelism.

3.3 GTC.n64.500a

These results are for a larger case GTC.n64.500a
which is a 64-toroidal-mode adiabatic electron (ions
only, 1 field) case. The grid is 64×400×8×8×20×1.
This runs on multiples of 64 processors. The du-
ration is 3 simulation seconds, representing 100
timesteps. The 400-point radial domain with 64
toroidal modes gives extremely high spatial resolu-
tion, but electron physics is ignored allowing simple
field solve and large timestep. The primary com-
munication cost results from calls to MPI ALLTOALL.
These are required to transpose distributed arrays
(distribution functions).

Figure 3 shows the average number of seconds
per timestep on three platforms for GTC.n64,500a,
and Figure 4 shows the ratio of communication time
to total time on these same machines.
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Figure 3 shows the X1 with a strong performance
here as in the previous 16-mode case. For this 64-
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Figure 4: Communication Time / Total Time.

mode case, the X1 performance is about a factor of
4 better than the Altix and a factor of 7 better than
the IBM. Figure 4 shows that both the IBM and
SGI are limited by communication overhead. Note
that the X1 performance is again affected by the
nonscaling part of parallel algorithm (as for the 16-
mode case), but this time the affect is negligible.
For instance, at 192 processors, 3% of the time is
spent in a phase that does not scale beyond 64-way
parallelism. This effect is minor because at 192 pro-
cessors, this case is using 1/3 of the processor while
for the 16-mode case it is only using 1/12 of the pro-
cessors. The communication is at least of factor of
5 better than the nearest competitor.

3.4 Waltz standard case benchmark

In this section, results are presented for the Waltz
standard case benchmark. This is a 16-toroidal-
mode electrostatic (electrons and ions, 1 field) case
on a 16 × 140 × 8 × 8 × 20 × 2 grid. This runs
on multiples of 16 processors, and is similar to the
BCY.n16.25 benchmark. This test case is run for
500 timesteps with kinetic electrons and electron col-
lisions, but no electromagnetic effects.

The numerical grid resolution used for this
benchmark is the same as that used in production
runs. It represents, roughly, the minimum grid size
required to obtain physically accurate results. The
scalability on all platforms could have been improved
by utilizing a finer grid, but is of more practical value
since a production-sized grid was used.

This test case demonstrates that the X1 yields
poor performance on “collisions” in GYRO. How-
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ever, the X1 is still the fastest architecture.
Figures 5-7 show the results of running the Waltz

standard case benchmark on the various platforms
mentioned above. Figure 5 shows the seconds per
timestep - the ultimate measure of how well this
code does on any machine. Figure 6 shows the av-
erage MPI time per timestep; this is derived from
total communication time and some extra integer
algebra. Figure 7 shows the average collision time
per timestep.

0.1

1

10

100

10 100 1000

S
ec

on
ds

 p
er

 ti
m

es
te

p

Processors

Waltz standard case benchmark

AMD
Power3
Power4

Altix
X1
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A few observations can be made from Figures 5-
7. First, it is clear from Figure 6 that the X1 pro-
vides more bandwidth than the the other platforms
with an order of magnitude less time spent in MPI.
Second, Figure 7 also makes it clear that the colli-
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Figure 7: Collision time (s) per timestep on the
Waltz standard case benchmark.

sion step runs several times slower on the X1 than
the other platforms and thus requires further tuning.
From Figure 5 we see for this benchmark that the
X1 is twice as fast as the nearest competitor. If we
ignore the collisions cost (there are real simulations
where the collision step is not used), we see that the
X1 is 5 times faster than the nearest competitor. We
also see from Figures 5 and 6 that the IBM Power4
cluster with Federation interconnect compares favor-
ably with the other machines and that it scales fairly
well even with its current handicap (see footnote 1.)
Note that the AMD cluster also performs reasonably
well only being an order of magnitude slower than
the fastest machine; and although its interconnect is
slow it scales well too.

3.5 Exploratory plasma edge simula-

tion

Also very recently we had the opportunity to run a
very large test case on 504 MSPs of a Cray X1. This
time was used to run a gyrokinetic simulation meant
to explore the parameter space characteristic of the
plasma edge. Magnetic shear and safety factor are
very high at the outer plasma boundary, and equi-
librium gradients are steep, making the simulations
more challenging than for core parameters.

A visualization of the results from a 504 MSP
simulation on the Cray X1 is shown in Figure 8. This
plots contours of the turbulent electrostatic poten-
tial mapped back onto an (elongated) torus. Note
the extreme elongation of the turbulent eddies in the
toroidal direction.
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Figure 8: Turbulent potential fluctuations in shaped
toroidal geometry for plasma edge simulation. This
case was run on 504 MSPs of the Cray X1.

Table 1 compares the performance of running
this exploratory simulation on an IBM Power3 clus-
ter and on a Cray X1 at relatively large processor
counts. The “time/step” column shows the average
time per step for 200 time steps of this simulation,
and the “MPI/step” column shows the average time
per step spent in MPI. Note that this is a collision-
less simulation.

Table 1: Exploratory plasma edge simulation tim-
ings.

Machine procs time/step MPI/step

IBM Pwr3 896 0.602450 0.103694
cluster 1344 0.544581 0.081436

1792 0.405187 0.067532
2240 0.431481 0.073186
2688 0.422913 0.066386

Cray X1 504 0.072615 0.005889

This study has shown that the Cray X1 at 504
MSPs can take almost 13.8 steps per second, whereas
the same case on the IBM NERSC Power3 machine
reaches a maximum rate of 2.5 steps per second at
1792 PEs and beyond. This means in practice that
one can take 5.8 times more steps per second on the
X1 (with 3.5 times fewer processors) than on the
IBM. The greater per-processor efficiency is clearly
evident with the X1 and leads to greater scalability.

4 Physics Accomplishments

The following detail some of the more important
findings made in the last year using the X1.

4.1 Comparison with DIII-D L-mode

ρ∗ experiments

An exhaustive series of global, full-physics GYRO
simulations of DIII-D L-mode ρ∗-similarity dis-
charges was made. In these famous experiments,
only a single dimensionless parameter was varied:
ρ∗

.
= ρs/a. The GYRO calculations matched exper-

imental results for electron and ion energy transport
[1] within experimental error bounds. The Bohm-
scaled diffusivity of the experiments was also repro-
duced, for which inclusion of electron collisions to-
gether with equilibrium sheared rotation was found
to be crucial. These were the most physically com-
prehensive tokamak turbulence simulations ever un-
dertaken.

4.2 Evaluation of minimum-q theory

of transport barrier formation

It was shown that a minimum-q surface (where
s = 0) in a tokamak plasma does not act as the
catalyst for ion transport barrier formation [3]. Al-
though there are theories of this process in the lit-
erature which argue that a barrier should form near
s = 0, the reality of this process had never been con-
vincingly demonstrated with simulation. Using the
X1, it was clearly shown that transport is smooth
across an s = 0 surface due to the appearance of gap
modes.

4.3 The local limit of global GK sim-

ulations

A controversial transport scaling study by Lin et al.
[5] substantially overestimated the Cyclone base case
[4] benchmark value as ever-larger global simulations
(at successively smaller ρ∗) were run. This contra-
dicted the local hypothesis, which states that global
and flux-tube simulations should agree at sufficiently
small ρ∗. Lin repeated the same study with minor
revisions in 2002 [7] and yet again in 2004 [6] ob-
taining an ion diffusivity, χi, still 36% higher than
the Cyclone value. Lin’s global scenario was revis-
ited with GYRO [2], with the finding that at small
ρ∗, χi closely matches the Cyclone value. Further,
it was shown that for these large-system-size simula-
tions, there is a very long transient period for which
χi exceeds the statistical average. By running simu-
lations for twice as long as the Lin simulations (900
a/cs versus 400 a/cs), a true statistical turbulent
steady state was recovered.
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4.4 Particle and impurity transport

The first systematic gyrokinetic study of particle
transport was made, including impurity transport
and isotope effects. We found that in a burning D-
T plasma, the tritium is better confined than deu-
terium, with the implication that the D-T fuel will
separate as tritium is retained. This conclusion was
found to be independent of temperature gradient
and electron collision frequency.

5 Current and future work

In this section we discuss two recent issues with
GYRO: 1) numerical accuracy investigation of
GYRO on the X1 and 2) the performance of the
collision step on the X1. And we conclude with
a discussion of the optimization work planned for
GYRO.

5.1 Catastrophic cancellation

In late 2003, simulation results from the X1 were
found to agree to only 9 digits from results on other
architectures after the setup phase. The timestep-
ping portion of the code had not even started. The
developers were of course quite concerned about this
and so an investigation was undertaken to under-
stand why. After a couple months of searching and
hundreds of print statements, one numerical issue
(in two separate routines) was found to be the cause
of the problem - catastrophic cancellation. Catas-
trophic cancellation is the sudden loss of accuracy
usually due to subtracting nearly equal quantities.

The GYRO numerical grid contains bounce
points - points where v‖ changes sign. Particles for
which v‖ change sign are called trapped. The code

computes v‖ =
√

1 − λB(θ) where (approximately)
B = 1 − ε cos(θ) and ε = r/ρ [see Eq. (5)]. Thus, at
a bounce point, v‖ is identically zero. However, nu-
merically the code generates values O(

√
ε) because

λB(θb) is nearly equal to 1 where θb is the solution
of B(θ) = 1/λ. Thus, at bounce points, where the
exact result should have been zero, we put in excep-
tional cases to set the result to zero.

With the exceptional cases implemented in the
code for the bounce points, now the results match
other platforms to 12 digits after the setup phase.
More digits of agreement is not expected or needed.

This loss of accuracy originating at the bounce
points (which is 1/40th of all gridpoints in a typi-

cal simulation) was roughly equivalent to adding a
stochastic source term with amplitude 1e-9 to the
O(1) kinetic equations. This can be shown that it
makes little difference in the “time-averaged” turbu-
lent diffusivity, which is an O(1) quantity. Thus, the
physical interpretation of all results prior to adding
the exceptional cases for the bounce points are valid.
And now GYRO is more arithmetically robust.

5.2 Collisions

The collision step on the X1 is performs poorly as
exhibited by the Waltz standard case benchmark
above. Figure 7 showed that the X1 does the col-
lision step many times slower than competing ar-
chitectures. Although the collision step has already
undergone optimizations to improve vectorization,
the results clearly show that more work is necessary.

To date the optimization attempts on the colli-
sion step have concentrated on the collision routine
solely, and have not significantly changed the un-
derlying algorithm, the calling routine, or the data
structures. For example, the first “optimizations”
inlined the tridiagonal solver and removed the piv-
oting logic. This resulted in improved vectorization,
but a tridiagonal solve is still a serial operation at its
core. The second attempt was to vectorize across the
tridiagonal solves. For most simulations, there are
64 or more independent tridiagonal solves. So the
algorithm was modified to concurrently solve these
systems. The hardest part of the logic to implement
was how to concurrently solve 64 tridiagonal systems
whose order is not guaranteed to be the same. After
implementing this second optimization, the tridiag-
onal matrix “setup” in the collision routine is the
most time-consuming step.

Currently, we believe the collision routine consid-
ered stand-alone from the rest of the code has been
optimized as much as possible for the X1. To truly
fix the poor performance, we expect that a major
rewrite of the collision routine will be required.

5.3 Future work

The future of GYRO with respect to optimizations
is clear: first and foremost the collision step must
be rewritten so that it performs much better on the
X1. Secondarily, a new parallel algorithm for the
field solves which currently replicates work must be
implemented. This inhibits scalability in some cases,
and will be beneficial on all platforms. After these
first two obvious candidates, we plan to improve the

8



nonlinear step by evaluating the transformation of
the toroidal angle in real space. This will mean a
more efficient algorithm using FFTs and again will
benefit all platforms. Lastly, a review of alternatives
to the current sparse solver will be done.

6 Conclusions

The X1 has provided a platform where new physics
scenarios have been quickly designed and analyzed
in record time in the last year. These findings in-
clude comparison with DIII-D L-mode ρ∗ experi-
ments, evaluation of minimum-q theory of transport
barrier formation, simulations of the local limit of
global GK simulations, and a systematic study of
particle and impurity transport.

The performance of GYRO on nonvector systems
is constrained by communication bandwidth, which
is not true on the X1. The X1 has exceptionally
high-bandwidth, low-latency communication hard-
ware, so communication times for various expensive
ALL TO ALL operations dropped to the lowest lev-
els ever for GYRO (the flagship gyrokinetic code for
the US Fusion Program). Moreover, the powerful
vector processing units each give a performance that
is a factor of 20 greater than Power3 for some cases
like the exploratory edge plasma simulation. The
fast communication coupled with the intrinsically
lower processor count define a system which, for a
given production problem size, can in many cases
provide a time-to-solution which is smaller than a
traditional supercomputer of any size.

The collision step on the X1 is known to perform
poorly, and the Waltz standard case benchmark is
a perfect example of that. The next step in the
optimization process is to address this issue by re-
evaluating the collision algorithm and to implement
something more vector friendly. However, even for
problems that do “collisions”, the X1 is still at least
a factor of two better than its competition. And
for collisionless simulations, the advantage is signif-
icantly more.
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